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1. Synthetic data generation for change detection
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Our generation pipeline : HySCDG

“top view of coniferous and deciduous next to a road in the locality of
Vendresse, Grand Est, in the morning, during summer, high resolution, highly
detailed”
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HySCDG, our generation pipeline - Process "Select, mask, change,
inpaint"
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FSC-180k Dataset
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FSC-180k consists of 180k semantically-annotated images pairs

Yanis Benidir, Nicolas Gonthier, Clément Mallet. The Change You Want To Detect: Semantic Change
Detection In Earth Observation With Hybrid Data Generation, CVPR 2025
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2. LLMs in Change Detection?
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Rethinking Change Detection

Aligning Model Capabilities with Real-World Needs

* |dentify strategic use cases (national and regional mapping agencies, ...)
* Implement a user-in-the-loop feedback system

® Control and customize model behavior via prompts

* Key shifts:

— (a) Discretization: From "Pixel-level" — "Instance-level" reasoning
— (b) Richer outputs: Change captioning

Towards Interactive Models

* Query-driven detection (guided by the user’s question)
* Dynamic adaptation to the specific task
* Focus on explaining the change, not just localizing it
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Target Use Cases

Concrete Examples

* Topographic Database updates

* Monitoring urbanization and soil sealing (artificialization)
* Post-disaster damage assessment

* Al-Assisted interpretation of aerial imagery

The Core Need
A single "Universal", Multi-task, Language-Driven Model
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The Solution: Vision Large Language Models
(VLLMSs)

Key Capabilities

¢ Visual Question Answering (VQA)
* Multimodal reasoning (Images + Text)
* Deep semantic understanding

¢ Natural Language Interaction via prompting

Main Objective
Answer "Change-related” questions based on image pairs/sequences
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A Multi-Task Approach

Functionalities

® Classic VQA Mode: Textual Questions / Answers
® Advanced Features:

Adapted specifically for Remote Sensing

Image Generation: Semantic maps / Change maps
Instantiation: Objects detection and segmentation
Spatial Analysis: Counting, Measuring areas

The "Universal" Dimension

Open Vocabulary Change Detection (OVCD)

* Unspecified classes, extensible vocabulary
* Classes represented by text embeddings rather than fixed labels
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3. Model Architecture
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Global Architecture

Backbone (Starting Point)

e Vision Encoder: SigLIP'
e LLM: LLaMA / Qwen2?
e Base Architecture: VideoLLaMA3°®

Proposed Improvements

* Fine-tuning specifically for Remote Sensing + Change Detection
* Integration of a custom Image Decoder
® True Multimodal Output: Text + Images

1 Zhai et al., Sigmoid Loss for Language Image Pre-Training (ICCV 2023).
2 Yang et al., Qwen2 Technical Report (2024)
3 Cheng et al., VideoLLaMA 2: Advancing Spatial-Temporal Modeling and Audio Understanding in Video-LLMs (2024).
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Our multimodal architecture

User: Can you
describe the change?

Input images

Yanis Benidir
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Our multimodal architecture

User: Can you
describe the change?

Some new houses
appeared...

Tokenizer

Input images
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Our multimodal architecture

User: Can you
describe the change?

Some new houses
appeared...

Tokenizer

Projector

Vision Encoder
SigLIP-NaViT

Input images
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Our multimodal architecture

User: Can you
describe the change?

Some new houses
appeared...

Tokenizer

Vision Encoder
SigLIP-NaViT

Semantic outputs

Input images
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The Image Decoder

Mechanism

1. Fusion: LLM features integration — Cross-Attention on linear sequences

2. Reshape: Linear — 2D Mini-Image
3. Decoding: Upsampling / U-Net blocks

Embedded visual

patches
. Reshape |:| |:| "U-Net style"
anoo—{ & = BE—|

A

000——

LLM hidden states
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Training vs. Inference Alignment

The Challenge

* Training: Access to the full ground truth sequence
* Inference: Token-by-token autoregressive generation

The Solution

* A special learnable token: <image_latent>

* The token’s hidden state captures the necessary semantic info
* The model learns to predict this token

* Appearance of the token triggers the Image Decoder
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4. Model Training
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Training Strategy

Loss Functions

® Text Loss: Cross-Entropy

® Semantic Loss: Cross-Entropy

® Change Loss: Cross-Entropy + Dice Loss
* Weighted losses (imbalanced classes)

Training Methods

* Modules are at different pre-training stages

* Sequential vs. Simultaneous training (+ LoRA ?)
* Specific learning rate scheduling per module

® Challenge: High numerical instability
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Training Data

Building a Multimodal Dataset

* Combining "Classic" Change Detection data + Captioning
® Aggregating diverse datasets:

— FSC-180k, HIUCD, SECOND-CC
— xView2 (Natural Disasters)
— LEVIR-MCI

Question Types Generation

* Specifying semantic classes
¢ |dentifying change trajectories (What happened?)
* Counting / Instantiation tasks

* In Practice: Automated pipeline to generate questions from existing
annotations
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Examples and Results

Binary Change Semantic segmentation
Model Predictions Ground Truth

Prediction

Ground Truth

Q: What has the road replaced? Q: What is the area of the change?

A: The new road replaced the deciduous trees. A: The total area of the change is 1750sqm. The
deciduous trees was replaced by agricultural vegetation

Q: How has evolved this zone? on a surface of 429sqm. The grass was replaced by

A: Nothing has changed. There are only some water on a surface of 836sqm. The grass was replaced

temporary changes. by brushwood on a surface of 484sgm.
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Thank You

yanis.benidir@ign.fr
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