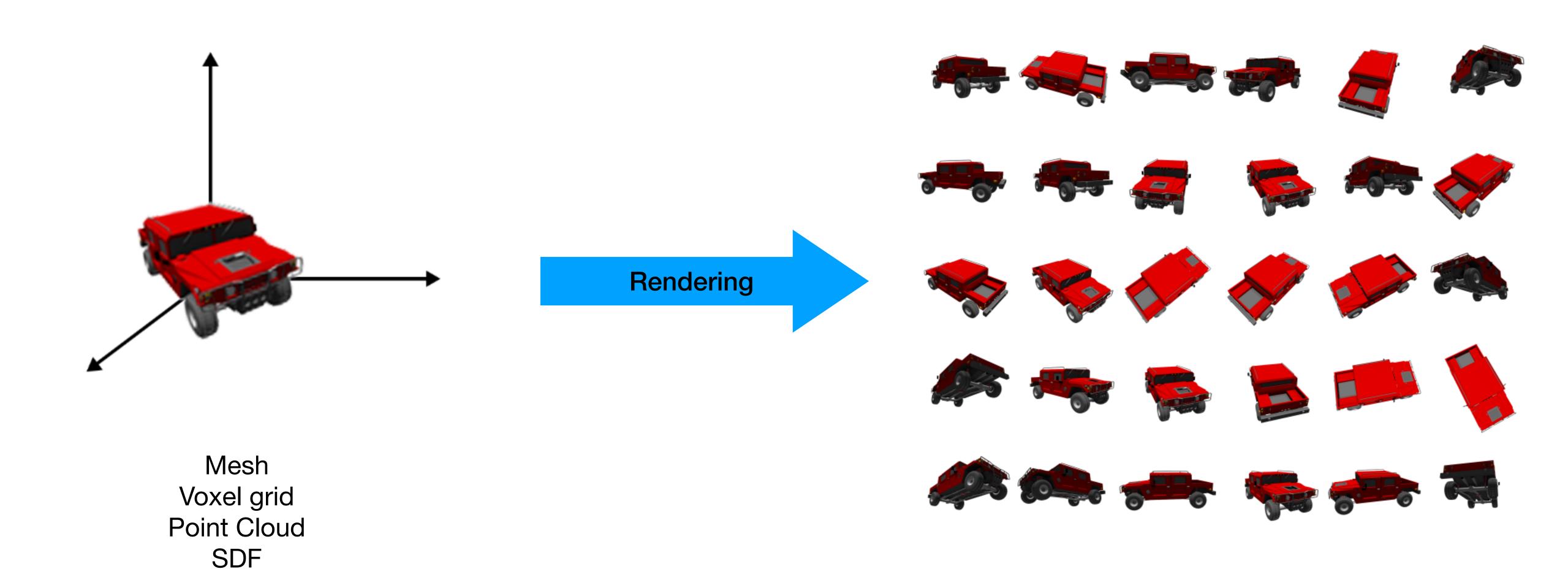
Exploring 3D-aware Latent Spaces for Efficiently Learning Numerous Scenes

Antoine Schnepf*1,3, Karim Kassab*1,2, Jean-Yves Franceschi¹, Laurent Caraffa², Flavian Vasile¹, Jeremie Mary¹, Andrew Comport³, Valérie Gouet-Brunet²

- * Equal Contributions
- ¹ Criteo Al Lab, Paris, France
- ² LASTIG, Université Gustave Eiffel, IGN-ENSG, F-94160 Saint-Mandé
- ³ Université Côte d'Azur, CNRS, I3S, France

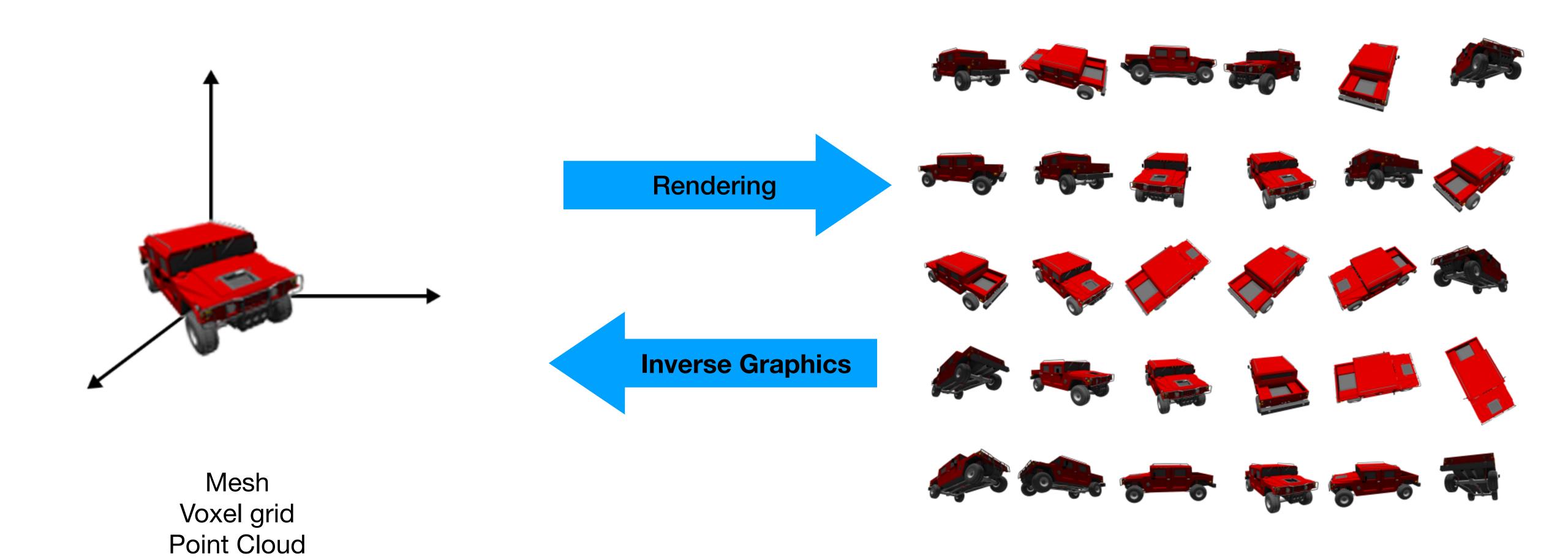
Pre-requisites

The inverse graphics problem

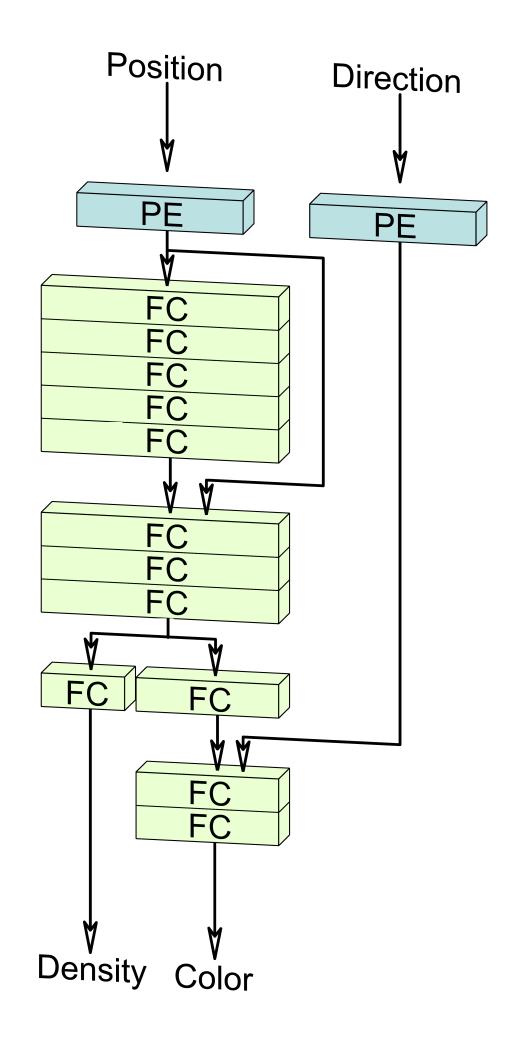


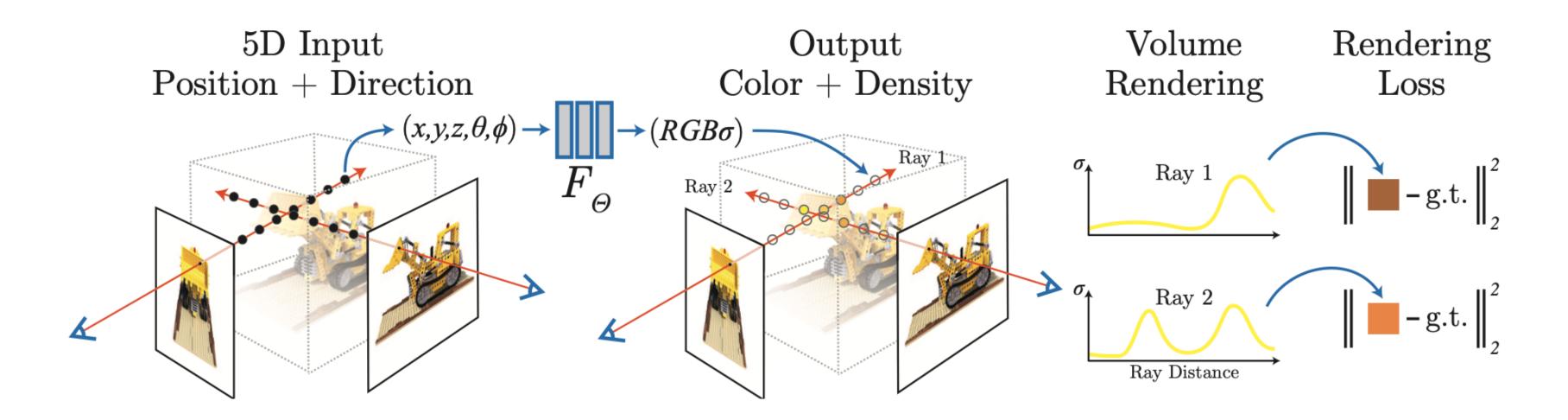
The inverse graphics problem

SDF



Neural Radiance Fields



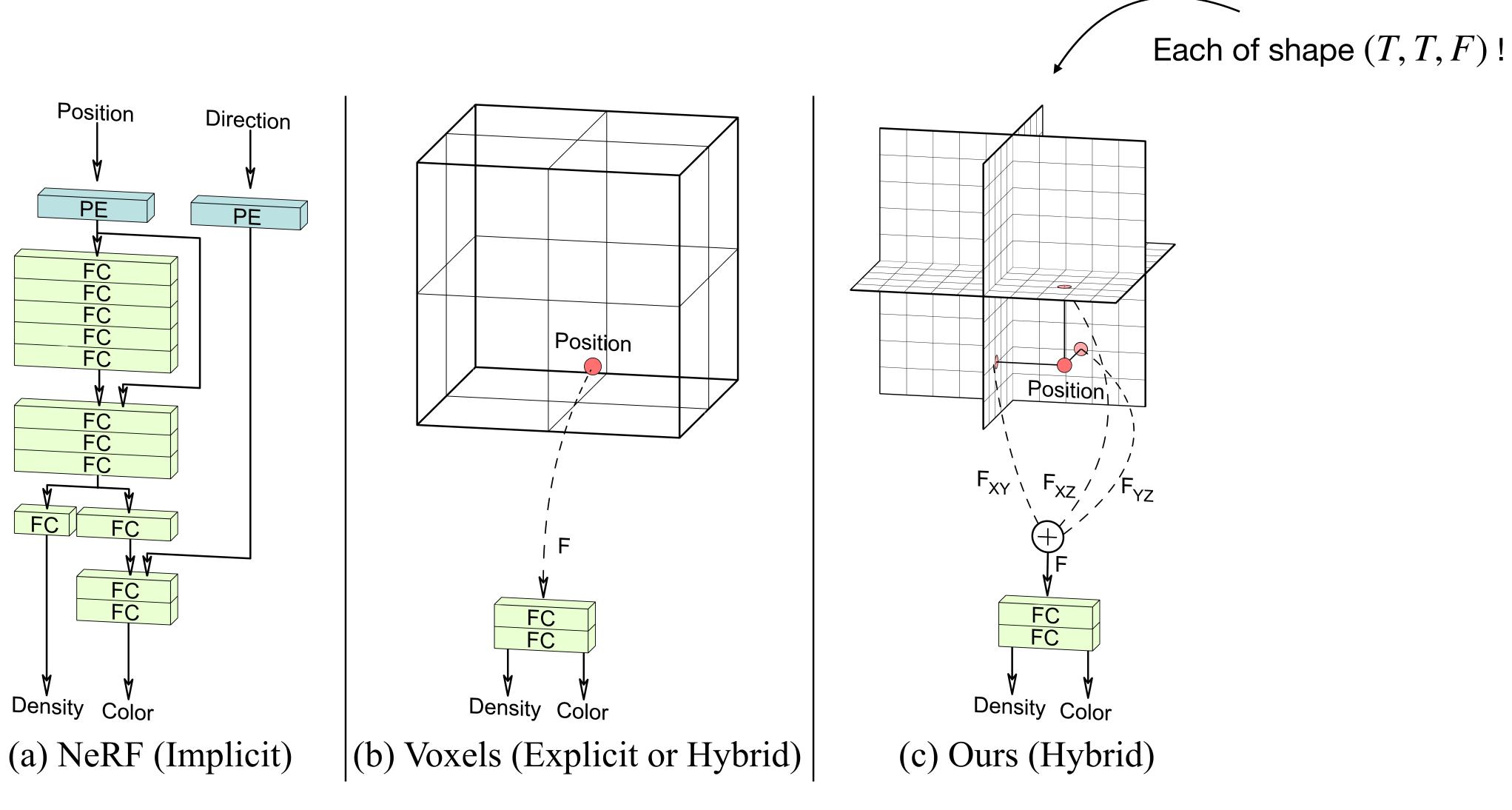


[NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis]

- NeRFs are implicit representations trained to replicate views of a scene
- NeRF ≅ MLP + Volume Rendering Equations

[Efficient Geometry-aware 3D GANs]

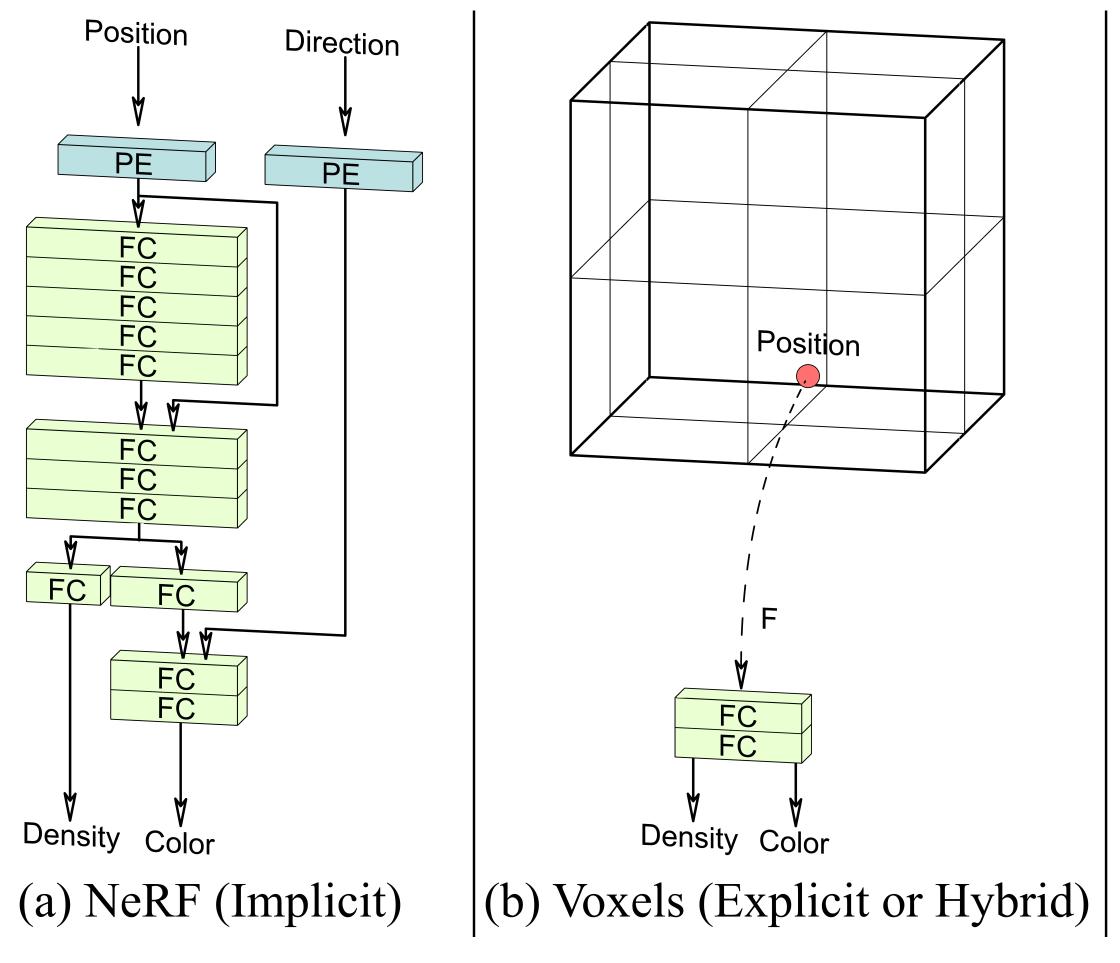
Tri-Planes scene representations



[Efficient Geometry-aware 3D GANs]

Tri-Planes scene representations

Each of shape (T, T, F)!



Position, FC Density Color (c) Ours (Hybrid)

[Efficient Geometry-aware 3D GANs]

- Tri-Planes are explicit-implicit representations
- Tri-Planes ≅ Three planes + tinyMLP + Volume Rendering Equations
- Both NeRFs and Tri-Planes are not scalable

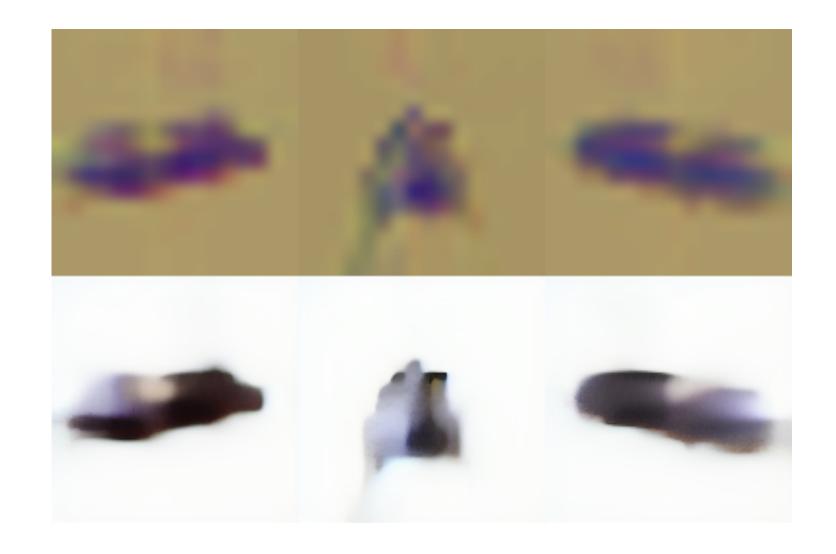
Inverse Graphics Problem

How to model a scene using its captured images?

(Scaled) Inverse Graphics Problem

How to model abundantly many scenes at once?

- Goal: Scale scene representation training in a specially-crafted latent space
 - Improves performances
 - Other applications
- Neural scene representations main assumption:
 - The underlying scene behind images is 3D
 - The renderings of the scene are 3D consistent



Tri-Planes trained in a standard AE.

 To train scene representations in a latent space, we have to design a 3D-aware latent space

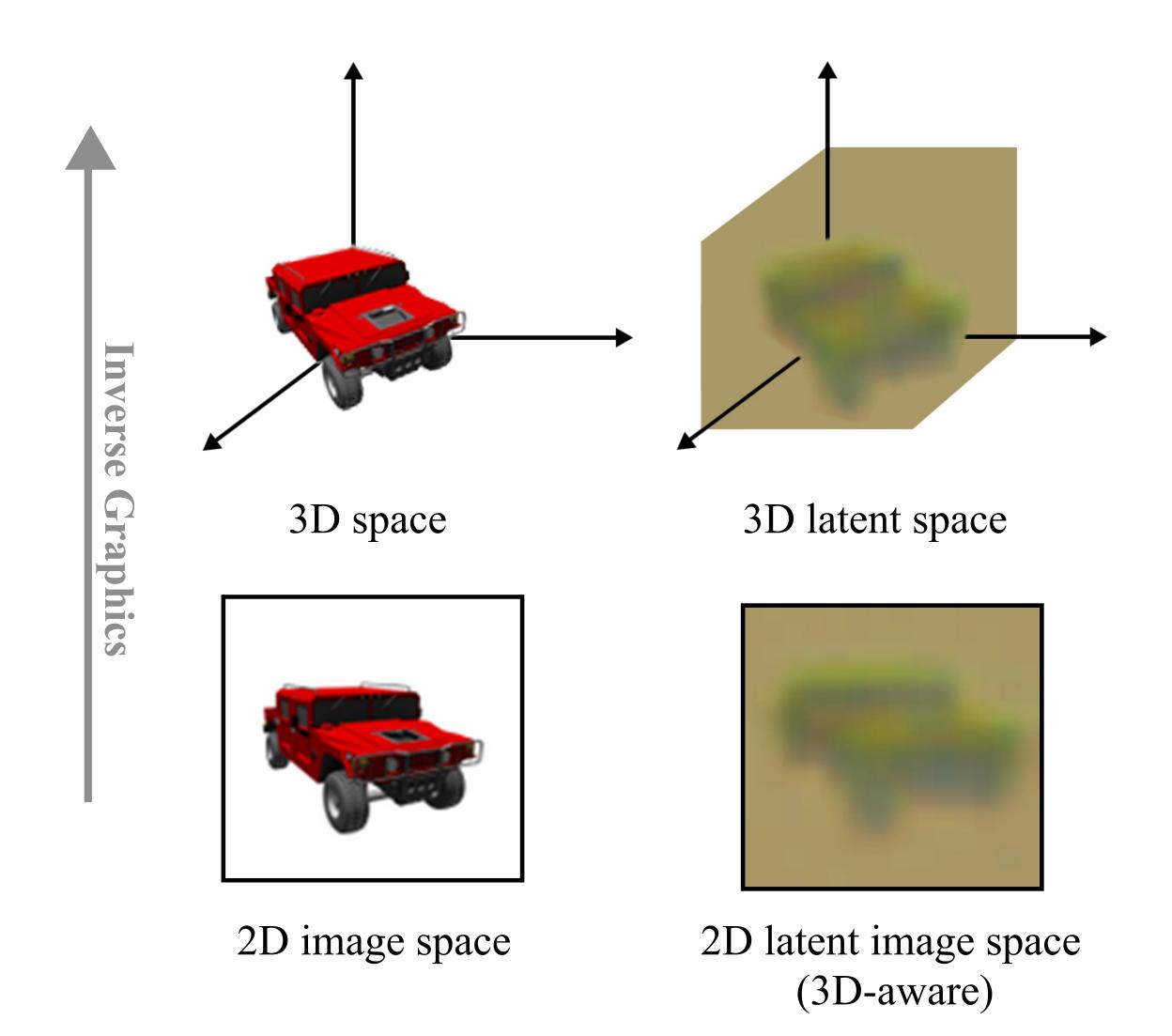
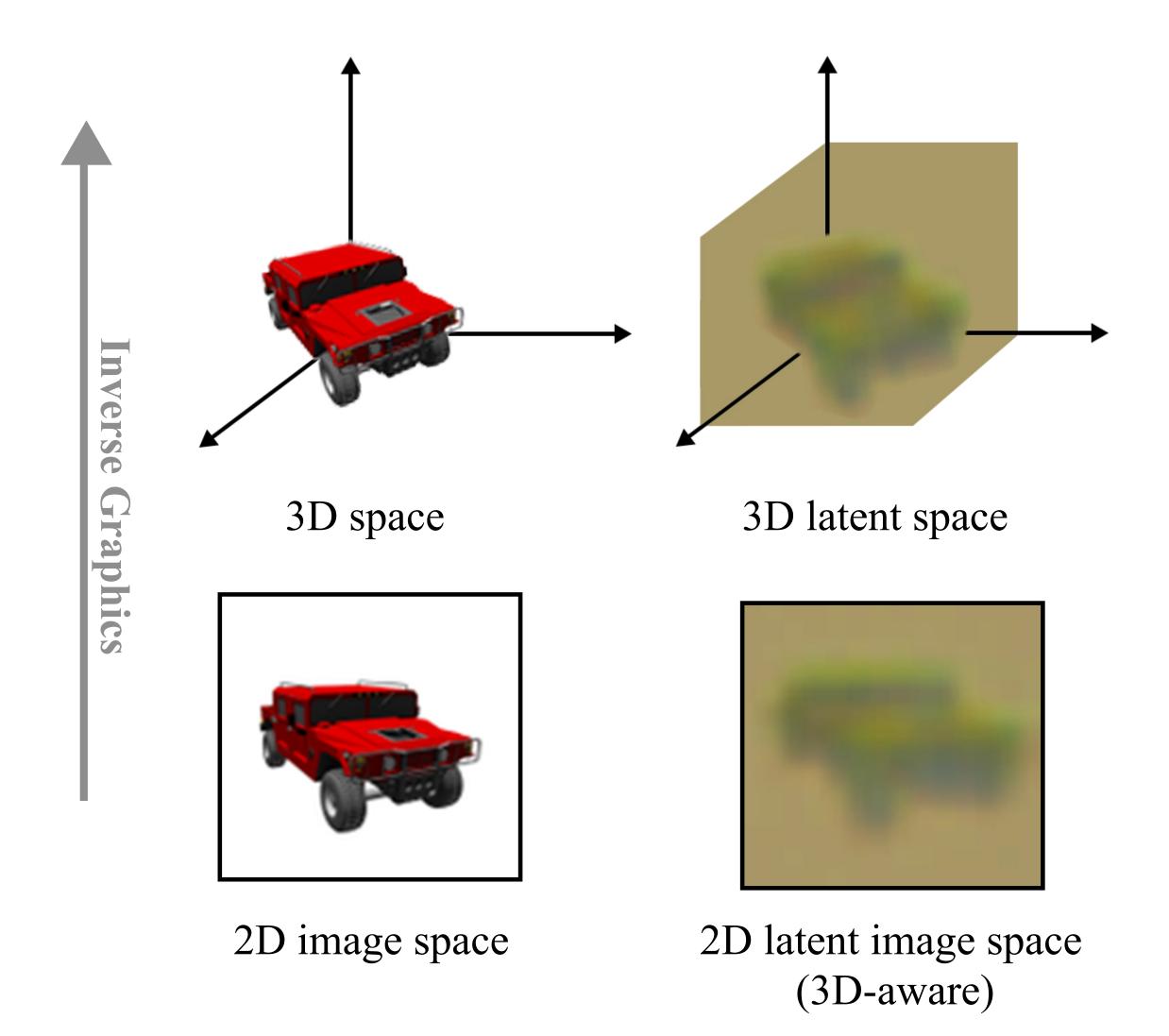


Figure 1. **3D-aware latent space.** We draw inspiration from the relationship between the 3D space and image space and introduce the idea of a 3D latent space. We propose a 3D-aware autoencoder that encodes images into a 3D-aware (2D) latent image space, in which we train our scene representations.

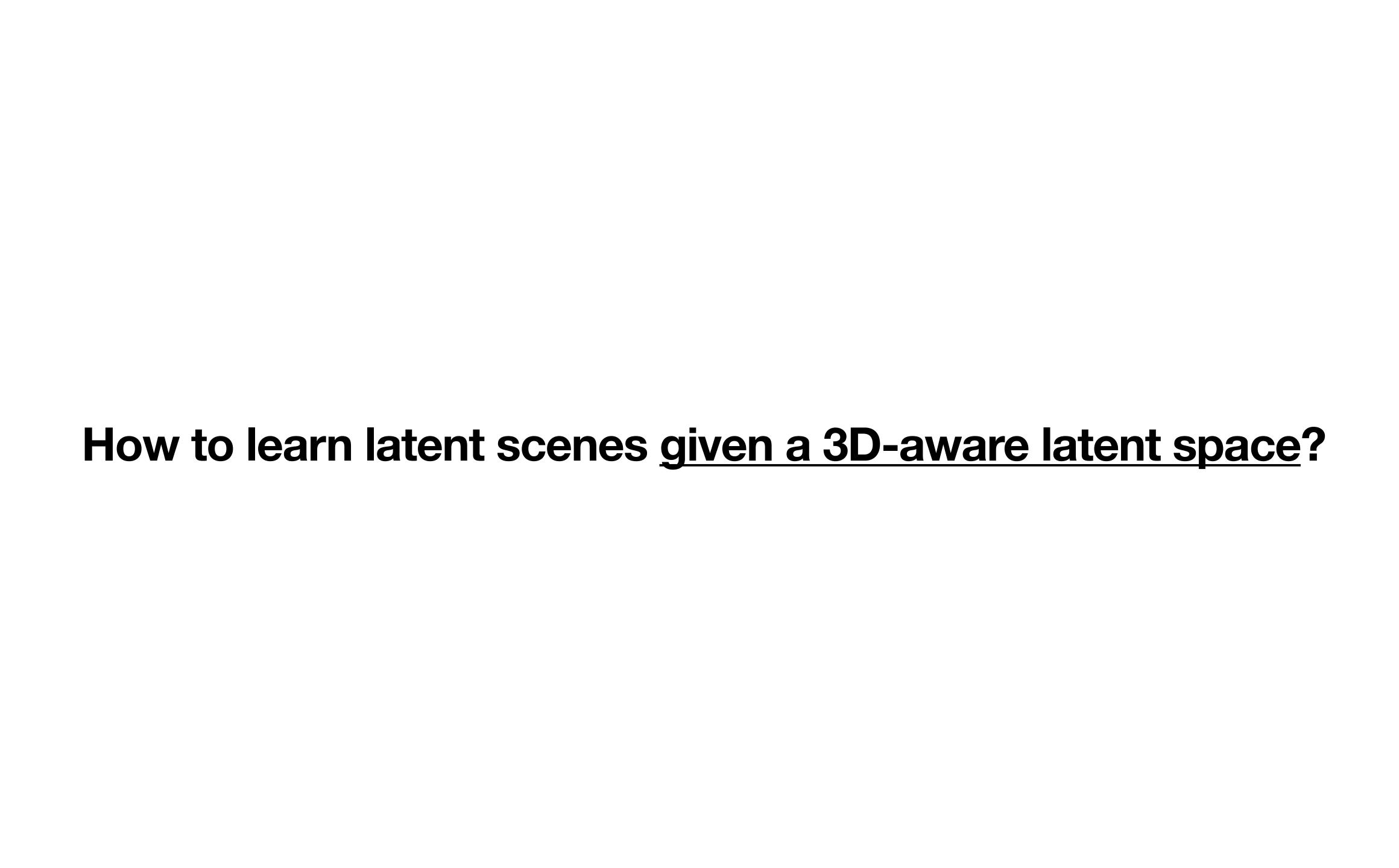
• To train scene representations in a latent space, we have to design a 3D-aware latent space



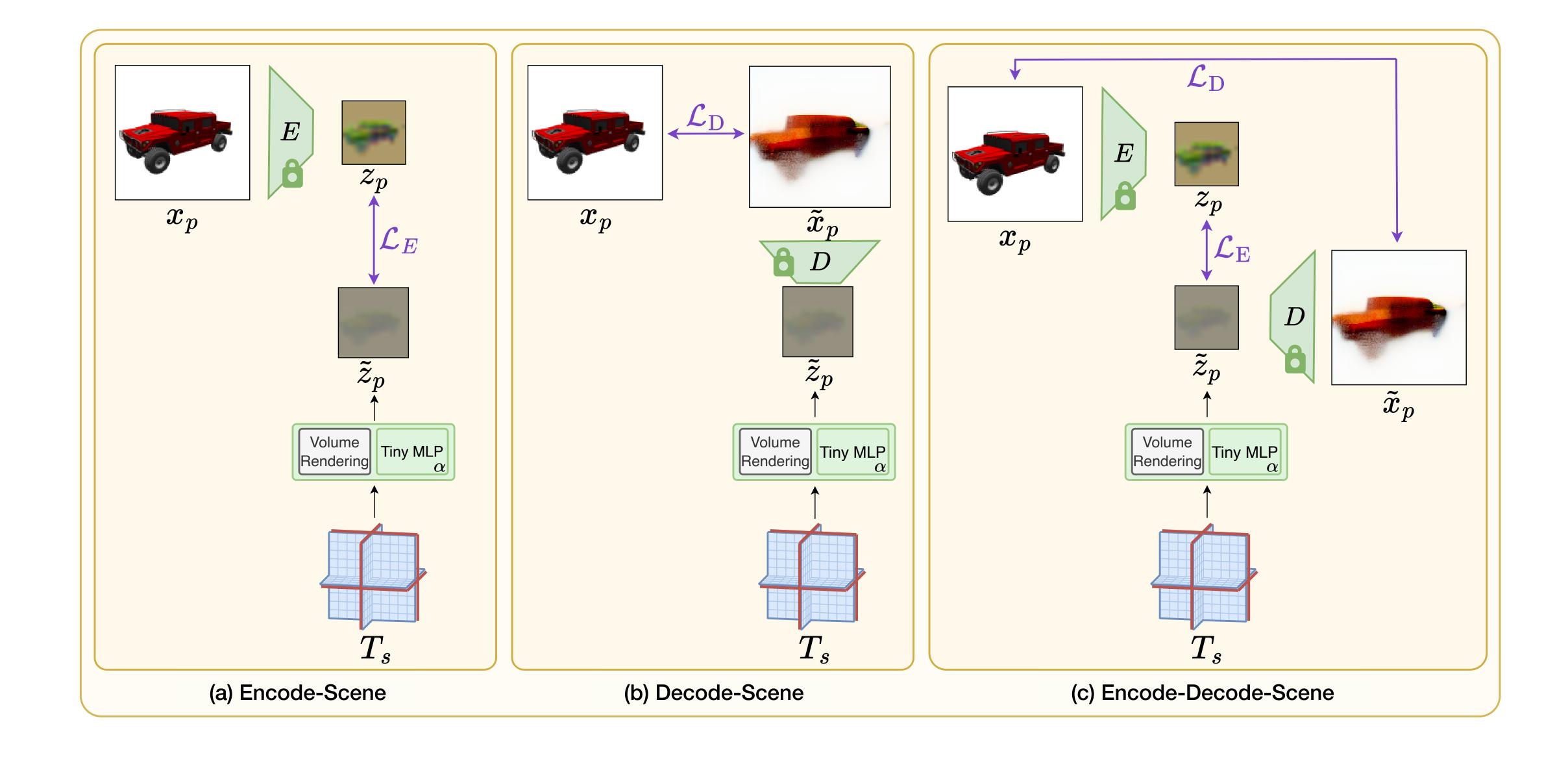
As such, we have two goals:

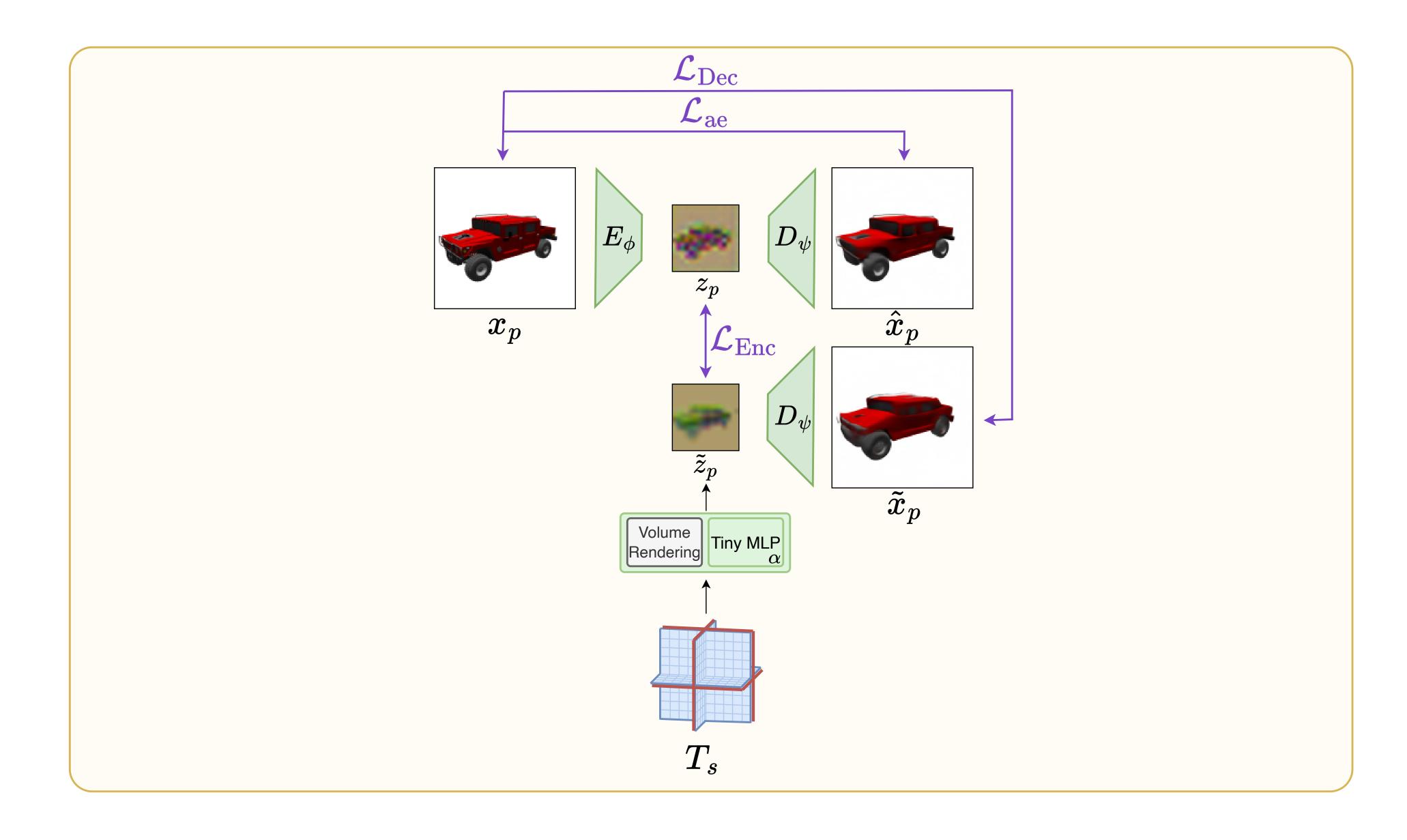
- 1. Learn a 3D-aware latent space
- 2. Leverage that latent space to scale the learning of 3D scenes

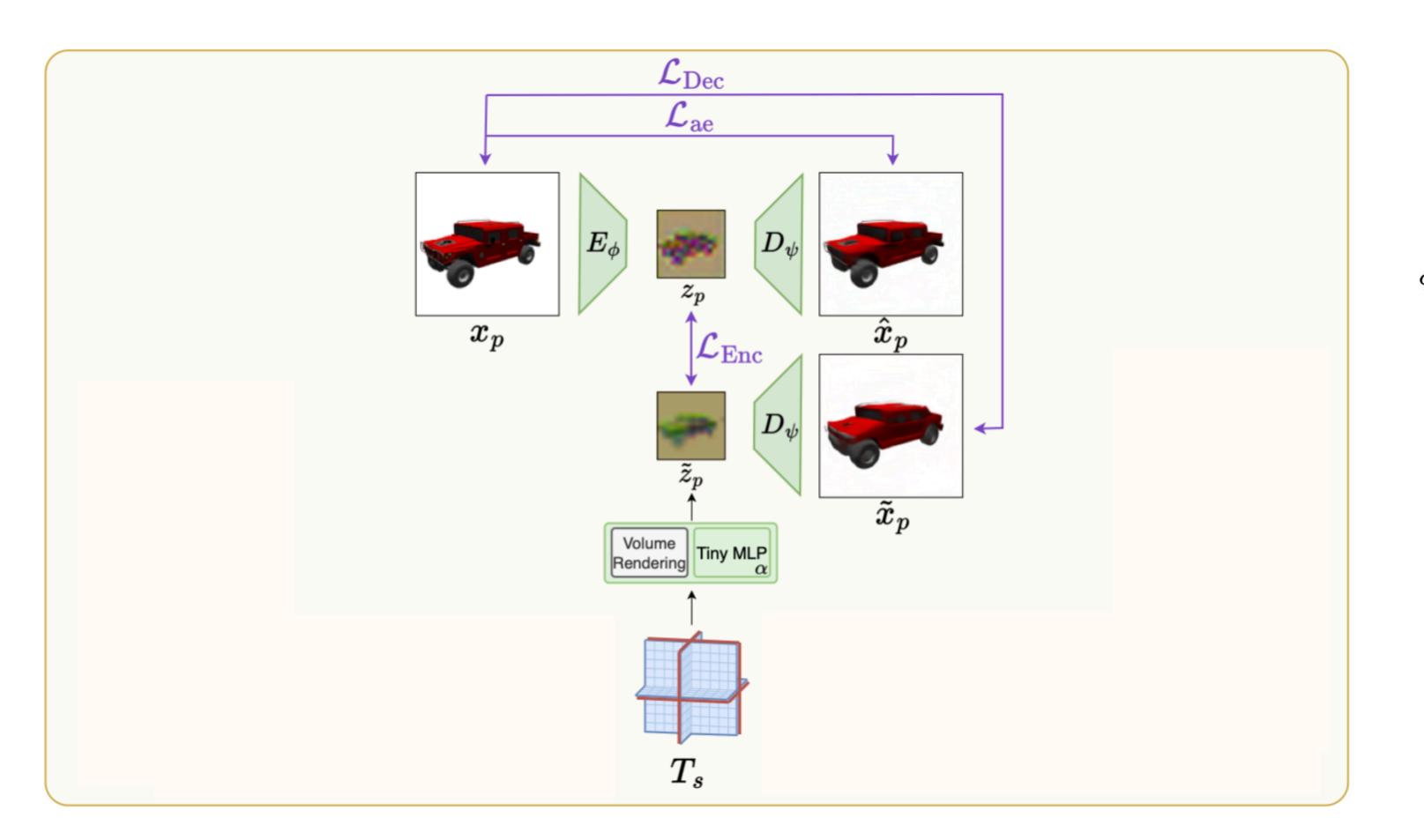
Figure 1. **3D-aware latent space.** We draw inspiration from the relationship between the 3D space and image space and introduce the idea of a 3D latent space. We propose a 3D-aware autoencoder that encodes images into a 3D-aware (2D) latent image space, in which we train our scene representations.



How to learn latent scenes given a 3D-aware latent space?



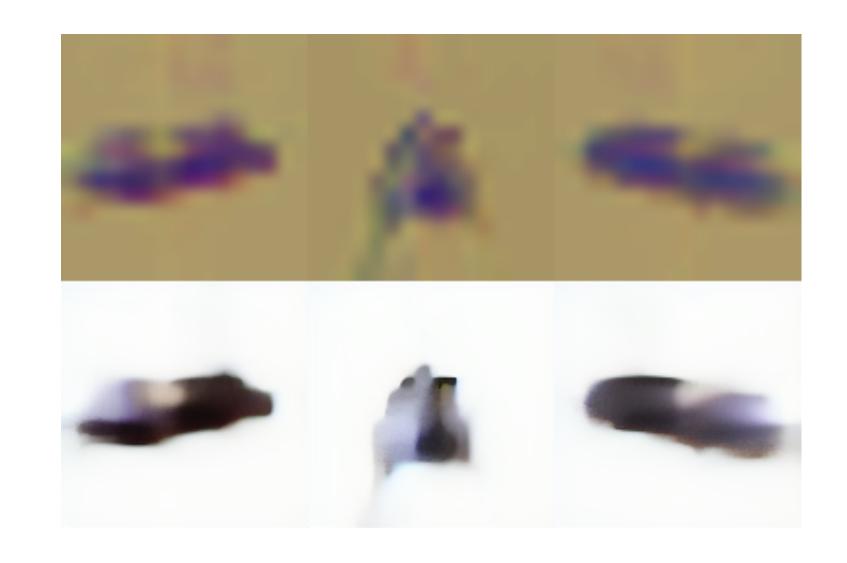




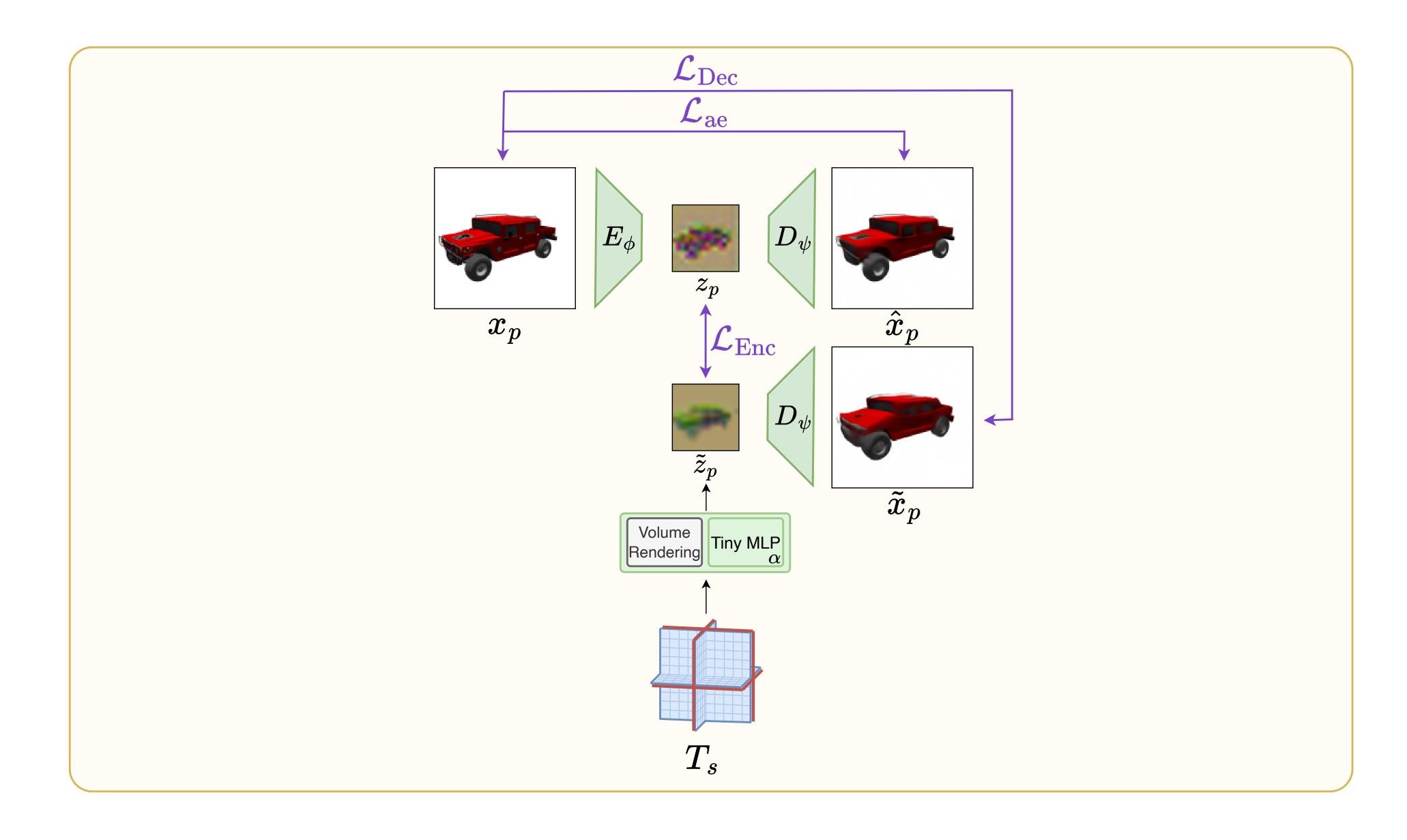
$$\min_{\phi,\psi,\alpha,T} \lambda_{\text{ae}} \mathcal{L}_{\text{ae}}(\phi,\psi) + \lambda_{\text{Enc}} \mathcal{L}_{\text{Enc}}(\phi,\alpha,T)
+ \lambda_{\text{Dec}} \mathcal{L}_{\text{Dec}}(\psi,\alpha,T) ,$$

with

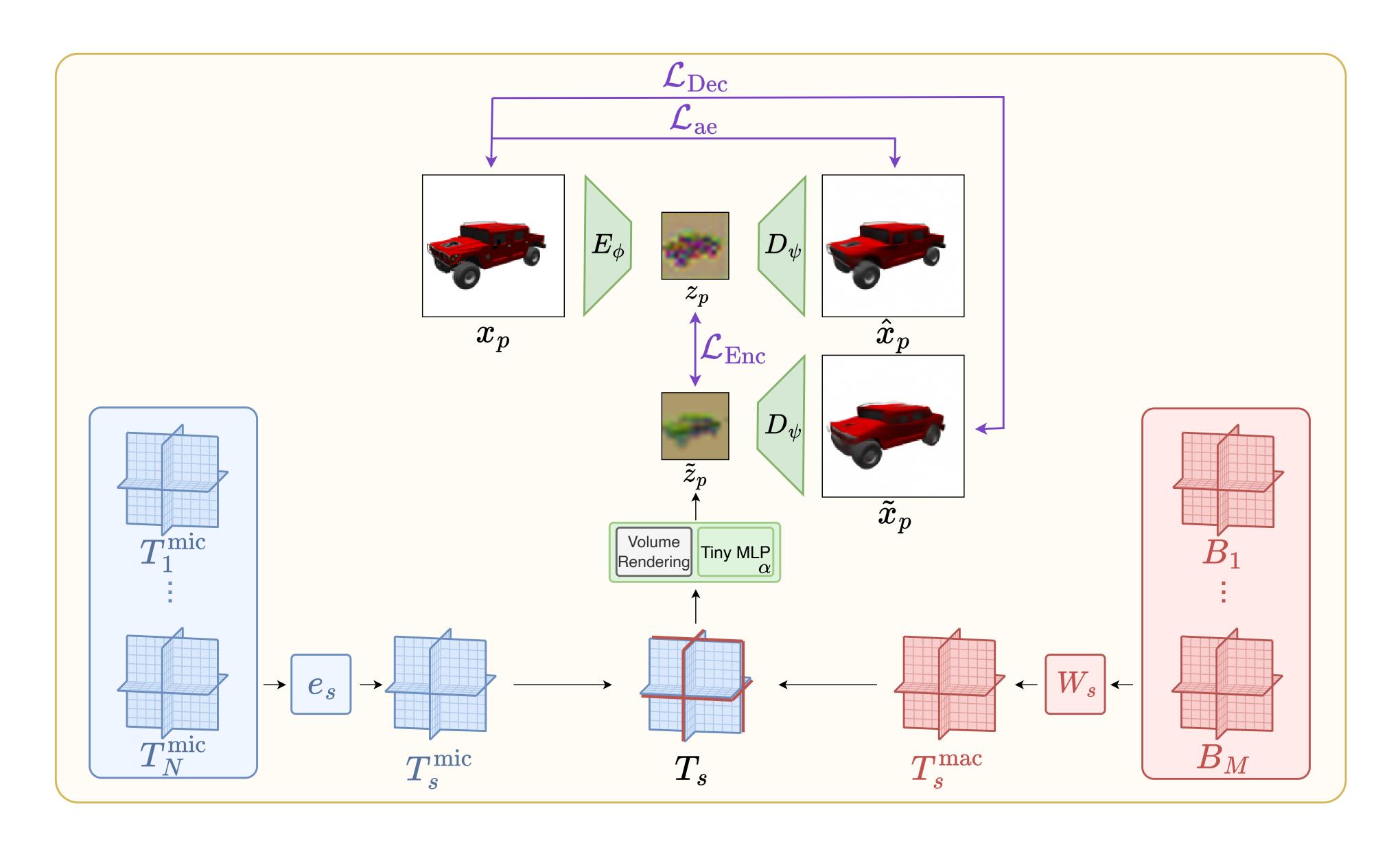
$$\begin{cases} \mathcal{L}_{ae}(\phi, \psi) = \mathbb{E}_{x_p} \|x_p - D_{\psi}(E_{\phi}(x_p))\|, \\ \mathcal{L}_{Enc}(\phi, \alpha, T) = \mathbb{E}_{x_p} \|E_{\phi}(x_p) - \mathcal{R}_{\alpha}(T, p)\|, \\ \mathcal{L}_{Dec}(\psi, \alpha, T) = \mathbb{E}_{x_p} \|x_p - D_{\psi}(\mathcal{R}_{\alpha}(T, p))\|, \end{cases}$$



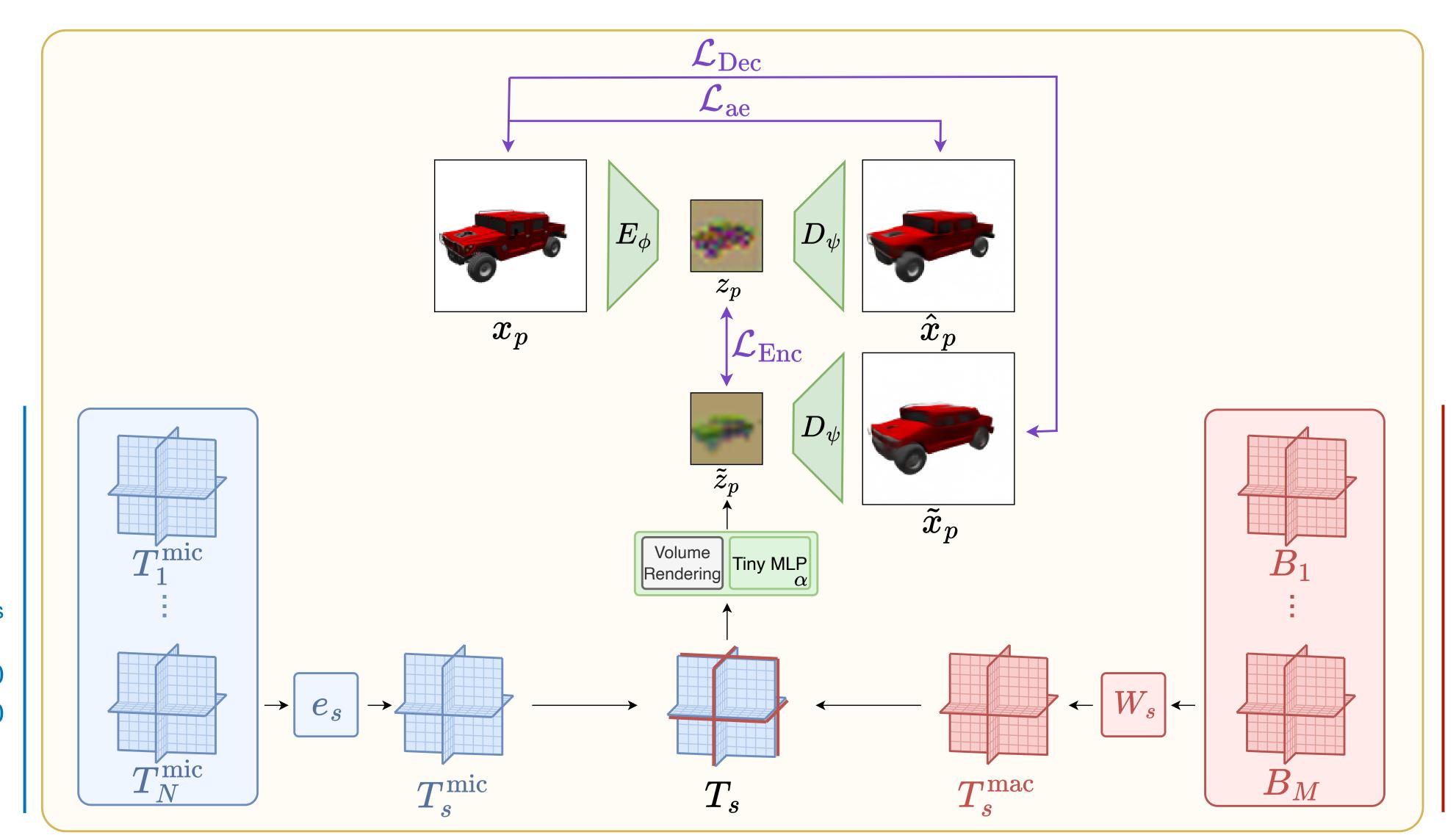
Tri-Planes trained in a 3Da-AE.



How to further scale training in a 3D-aware latent space?



How to further scale training in a 3D-aware latent space?



N "mini" planes

 $N_{train} = 500$ $N_{exploit} = 1000$

"Only" M planes where M is constant

M = 50

Results

3D-aware autoencoder

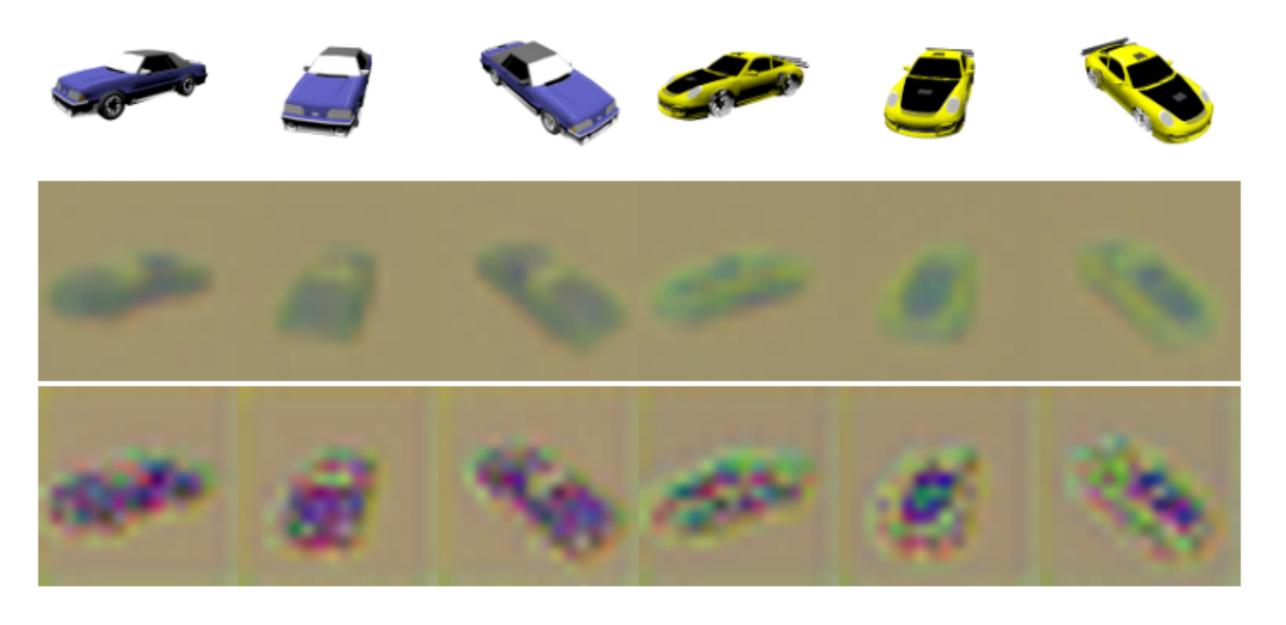


Figure 3. Latent space comparison. Top: ground truth image. Middle: latent image obtained with the 3D-aware encoder. Bottom: latent image obtained with the baseline encoder. Qualitative results show that our 3D-aware encoder better preserves 3D consistency and geometry in the latent space.

Renderings

Experiment	1, ates	n Space	o Planes	O.Planes Train sce	nes Exploit scenes
Ours-Micro	1	1	X	26.52	26.95
Ours-Macro	✓	×	✓	25.67	26.10
Tri-Planes-Macro (RGB)	X	X	✓	27.84	28.00
Tri-Planes (RGB)	X	1	X	28.24	28.40
Ours-No-Prior	✓	1	✓	27.72	28.13
Ours	1	✓	1	28.05	28.48

Table 2. Quality comparison. Average PSNR demonstrated by our method with a comparison to Tri-Planes and ablations of our pipeline. All metrics are computed on never-seen test views. Here, we consider $N_{\rm train}=500$, $N_{\rm exploit}=100$, and M=50. For compute constraints, Tri-Planes metrics are averaged on 50 scenes.

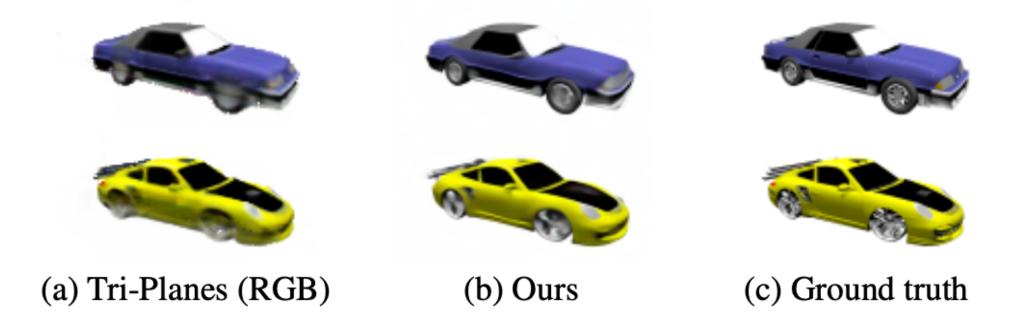


Figure 8. **Visual comparison**. Visual comparison of novel view synthesis quality for our method and Tri-Planes (RGB).

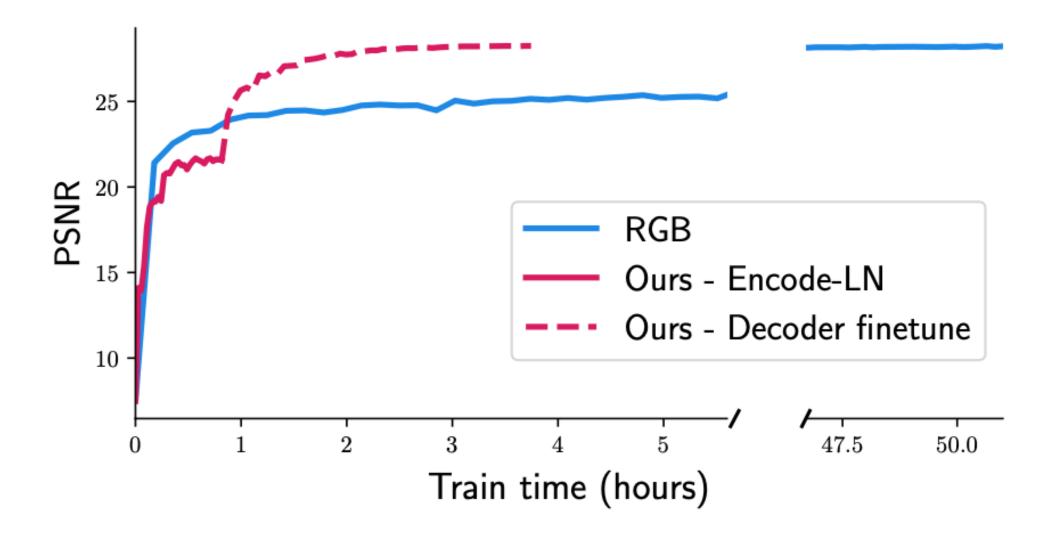


Figure 6. **Quality evolution.** Evolution of the average test-view PSNR demonstrated in the exploit phase of our method compared to RGB Tri-Planes ($N_{\rm exploit}=100$). Our method achieves comparable quality in less training time.

Resource costs

	$t_{ m scene} \ m (min)$	$t_{ m scene}^{ m eff} \ (m min)$	$m_{ m scene} \ m (MB)$	$m_{ m scene}^{ m eff} \ m (MB)$	Rendering Time (ms)	Rendering Resolution
Encoder Decoder		_	0 0	0.13 0.19	<u> </u>	-128×128
Tri-Planes (RGB) Our method	32 2	32 4.5	1.5 0.48	1.5 0.84	23.3 11.0	128×128 128×128

Table 1. Cost comparison. Per scene cost comparison with Tri-Planes trained in the image space. Here, we consider $N_{\text{train}} = 500$, $N_{\text{exploit}} = 1000$, $t_{\text{EC}} = 40$ hours, M = 50, $F^{\text{mac}} = 22$. Our method reduces the effective training time by 86% per scene, and the effective memory cost by 44% per scene.

$$t_{
m scene}^{
m eff} = rac{t_{
m EC}}{N_{
m exploit}} + t_{
m scene} \qquad m_{
m scene}^{
m eff} = rac{m_{
m EC}}{N_{
m exploit}} + m_{
m scene}$$

Resource costs

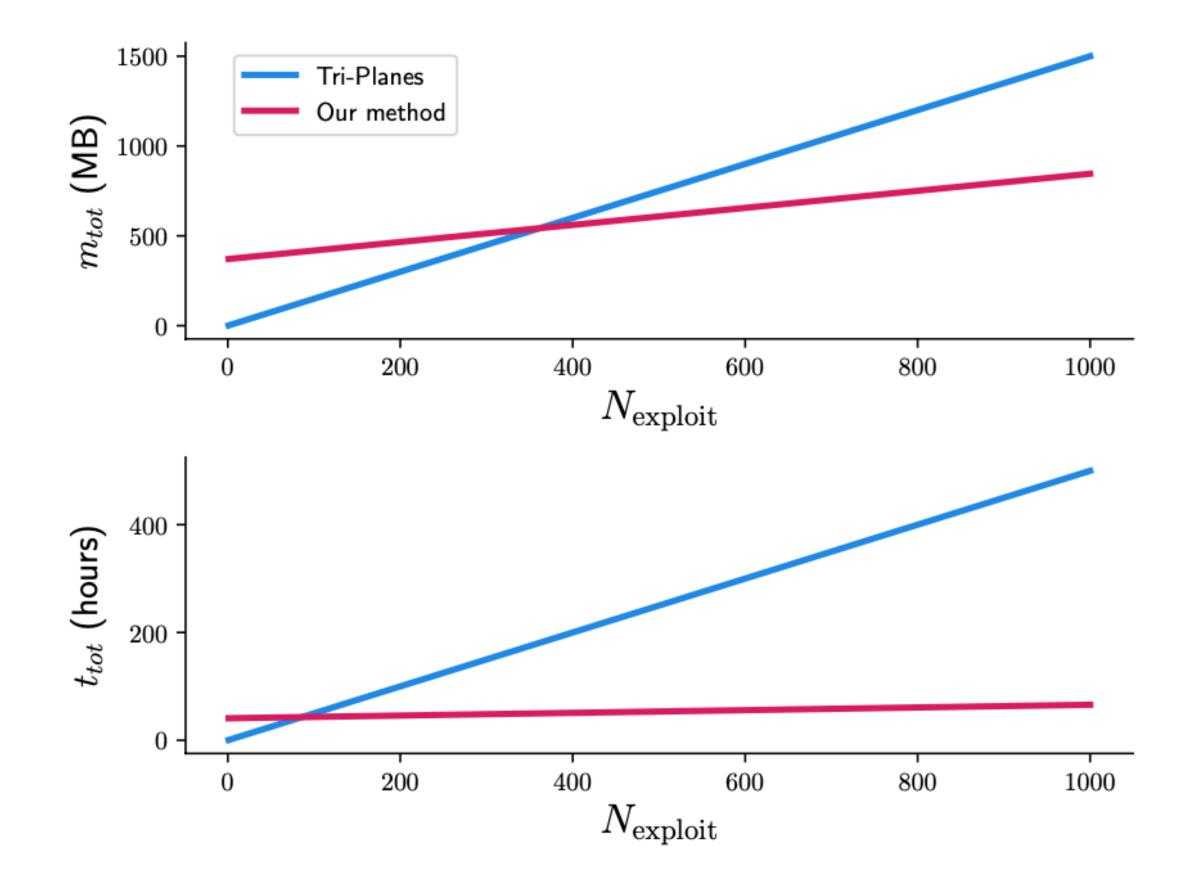


Figure 7. Cost evolution. Total memory and train time evolution when scaling the number of trained scenes $N_{\rm exploit}$. The entry training cost t_{EC} and memory costs m_{EC} are taken into account. Our method demonstrates more favorable scalability properties as compared to Tri-Planes (RGB).

Exploring 3D-aware Latent Spaces for Efficiently Learning Numerous Scenes

Antoine Schnepf*1,3, Karim Kassab*1,2, Jean-Yves Franceschi¹, Laurent Caraffa², Flavian Vasile¹, Jeremie Mary¹, Andrew Comport³, Valérie Gouet-Brunet²

Accepted at 3DMV-CVPR workshop

- * Equal Contributions
- ¹ Criteo Al Lab, Paris, France
- ² LASTIG, Université Gustave Eiffel, IGN-ENSG, F-94160 Saint-Mandé
- ³ Université Côte d'Azur, CNRS, I3S, France

